Κυριακή 17 Ιουνίου 2012

Δια της "εις άτοπον απαγωγής" …

Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια : 




Η απαγωγή σε άτοπο (λατινικά reductio ad absurdum, καθαρεύουσα εις άτοπον απαγωγή) είναι μία από τις σημαντικότερες και συχνότερα χρησιμοποιούμενες μεθόδους μαθηματικής απόδειξης. 


Ωστόσο, η απαγωγή σε άτοπο δεν χρησιμοποιείται αποκλειστικά στα μαθηματικά και την τυπική λογική. Γενικότερα, είναι η συλλογιστική μέθοδος,


κατά την οποία αποδεικνύεται η αλήθεια μιας πρότασης με βάση το γεγονός ότι η αντίθετη της είναι ψευδής ή λανθασμένη.


Χρησιμοποιήθηκε από τον Αριστοτέλη σε συνδυασμό με την αρχή αποκλειόμενου μέσου και την αρχή μη-αντίφασης. Σημαντική πηγή επιχειρημάτων εις άτοπο απαγωγής αποτελούν οι πλατωνικοί διάλογοι καθώς και οι αντινομίες του Καντ.


Συνήθως η αντίθετη της προς απόδειξη πρότασης δεν είναι άμεσα ή φανερά λανθασμένη η ίδια. Αλλά οδηγεί σε ισοδύναμα συμπεράσματα που αυτά είναι σαφώς λανθασμένα.


Η δομή του επιχειρήματος είναι τέτοια ώστε για να αποδειχθεί πως μία πρόταση είναι αληθής, ξεκινάμε από την υπόθεση πως η αντίθετη της είναι αληθής (δηλαδή η αρχική πρόταση είναι ψευδής) και καταλήγουμε σε ένα συμπέρασμα που αποτελεί αντίφαση
Τότε, εφόσον η αντίφαση προέκυψε από διαδοχή έγκυρων συλλογισμών προς ισοδύναμες προτάσεις, η αρχική πρόταση θα πρέπει να είναι σε κάθε περίπτωση αληθής.


Ή αντίστοιχα, για να αποδειχθεί πως μία πρόταση είναι ψευδής, ξεκινάμε από την υπόθεση πως είναι αληθής, και καταλήγουμε σε ένα συμπέρασμα που αποτελεί αντίφαση. Τότε, εφόσον η αντίφαση προέκυψε διαδοχή έγκυρων συλλογισμών προς ισοδύναμες προτάσεις, η αρχική πρόταση θα πρέπει να είναι σε κάθε περίπτωση ψευδής.


ΣΧΟΛΙΟ:  Κάπως έτσι ας ψηφίσουμε σήμερα ... Με βάση την αντίθετη πρόταση !!!
                 Αν η αντίθετη πρόταση είναι λανθασμένη, τότε η επιλογή μας είναι σωστή !!!
                 ( π.χ. Ευρώ ή Δραχμή ; )

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου